Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 680
Filtrar
1.
Nat Commun ; 15(1): 2751, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553499

RESUMO

Influenza virus activates cellular inflammasome pathways, which can be both beneficial and detrimental to infection outcomes. Here, we investigate the function of the inflammasome-activated, pore-forming protein gasdermin D (GSDMD) during infection. Ablation of GSDMD in knockout (KO) mice (Gsdmd-/-) significantly attenuates influenza virus-induced weight loss, lung dysfunction, lung histopathology, and mortality compared with wild type (WT) mice, despite similar viral loads. Infected Gsdmd-/- mice exhibit decreased inflammatory gene signatures shown by lung transcriptomics. Among these, diminished neutrophil gene activation signatures are corroborated by decreased detection of neutrophil elastase and myeloperoxidase in KO mouse lungs. Indeed, directly infected neutrophils are observed in vivo and infection of neutrophils in vitro induces release of DNA and tissue-damaging enzymes that is largely dependent on GSDMD. Neutrophil depletion in infected WT mice recapitulates the reductions in mortality, lung inflammation, and lung dysfunction observed in Gsdmd-/- animals, while depletion does not have additive protective effects in Gsdmd-/- mice. These findings implicate a function for GSDMD in promoting lung neutrophil responses that amplify influenza virus-induced inflammation and pathogenesis. Targeting the GSDMD/neutrophil axis may provide a therapeutic avenue for treating severe influenza.


Assuntos
Neutrófilos , Orthomyxoviridae , Animais , Camundongos , Neutrófilos/metabolismo , Gasderminas , Inflamassomos/genética , Inflamassomos/metabolismo , Inflamação/genética , Inflamação/metabolismo , Orthomyxoviridae/metabolismo , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/metabolismo
2.
J Virol ; 98(3): e0004224, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38376198

RESUMO

Influenza D virus (IDV) utilizes bovines as a primary reservoir with periodical spillover to other hosts. We have previously demonstrated that IDV binds both 9-O-acetylated N-acetylneuraminic acid (Neu5,9Ac2) and 9-O-acetylated N-glycolylneuraminic acid (Neu5Gc9Ac). Bovines produce both Neu5,9Ac2 and Neu5Gc9Ac, while humans are genetically unable to synthesize Neu5Gc9Ac. 9-O-Acetylation of sialic acids is catalyzed by CASD1 via a covalent acetyl-enzyme intermediate. To characterize the role of Neu5,9Ac2 and Neu5Gc9Ac in IDV infection and determine which form of 9-O-acetylated sialic acids drives IDV entry, we took advantage of a CASD1 knockout (KO) MDCK cell line and carried out feeding experiments using synthetic 9-O-acetyl sialic acids in combination with the single-round and multi-round IDV infection assays. The data from our studies show that (i) CASD1 KO cells are resistant to IDV infection and lack of IDV binding to the cell surface is responsible for the failure of IDV replication; (ii) feeding CASD1 KO cells with Neu5,9Ac2 or Neu5Gc9Ac resulted in a dose-dependent rescue of IDV infectivity; and (iii) diverse IDVs replicated robustly in CASD1 KO cells fed with either Neu5,9Ac2 or Neu5Gc9Ac at a level similar to that in wild-type cells with a functional CASD1. These data demonstrate that IDV can utilize Neu5,9Ac2- or non-human Neu5Gc9Ac-containing glycan receptor for infection. Our findings provide evidence that IDV has acquired the ability to infect and transmit among agricultural animals that are enriched in Neu5Gc9Ac, in addition to posing a zoonotic risk to humans expressing only Neu5,9Ac2.IMPORTANCEInfluenza D virus (IDV) has emerged as a multiple-species-infecting pathogen with bovines as a primary reservoir. Little is known about the functional receptor that drives IDV entry and promotes its cross-species spillover potential among different hosts. Here, we demonstrated that IDV binds exclusively to 9-O-acetylated N-acetylneuraminic acid (Neu5,9Ac2) and non-human 9-O-acetylated N-glycolylneuraminic acid (Neu5Gc9Ac) and utilizes both for entry and infection. This ability in effective engagement of both 9-O-acetylated sialic acids as functional receptors for infection provides an evolutionary advantage to IDV for expanding its host range. This finding also indicates that IDV has the potential to emerge in humans because Neu5,9Ac2 is ubiquitously expressed in human tissues, including lung. Thus, results of our study highlight a need for continued surveillance of IDV in humans, as well as for further investigation of its biology and cross-species transmission mechanism.


Assuntos
60548 , Ácidos Neuramínicos , Receptores Virais , Animais , Bovinos , Membrana Celular/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Ácidos Neuramínicos/metabolismo , Orthomyxoviridae/metabolismo , Receptores Virais/metabolismo , Ácidos Siálicos/metabolismo
3.
mBio ; 15(2): e0220323, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38206008

RESUMO

The ongoing transmission of influenza A viruses (IAV) for the past century continues to be a burden to humans. IAV binds terminal sialic acids (SA) of sugar molecules present within the upper respiratory tract (URT) in order to successfully infect hosts. The two most common SA structures that are important for IAV infection are those with α2,3- and α2,6-linkages. While mice were once considered to be an unsuitable system for studying IAV transmission due to their lack of α2,6-SA in the trachea, we have successfully demonstrated that IAV transmission in infant mice is remarkably efficient. This finding led us to re-evaluate the SA composition of the URT of mice using in situ immunofluorescence and examine its in vivo contribution to transmission for the first time. We demonstrate that mice express both α2,3- and α2,6-SA in the URT and that the difference in expression between infants and adults contributes to the variable transmission efficiencies observed. Furthermore, selectively blocking α2,3-SA or α2,6-SA within the URT of infant mice using lectins was necessary but insufficient at inhibiting transmission, and simultaneous blockade of both receptors was crucial in achieving the desired inhibitory effect. By employing a broadly acting neuraminidase to indiscriminately remove both SA moieties in vivo, we effectively suppressed viral shedding and halted the transmission of different strains of influenza viruses. These results emphasize the utility of the infant mouse model for studying IAV transmission and strongly indicate that broadly targeting host SA is an effective approach that inhibits IAV contagion.IMPORTANCEInfluenza virus transmission studies have historically focused on viral mutations that alter hemagglutinin binding to sialic acid (SA) receptors in vitro. However, SA binding preference does not fully account for the complexities of influenza A virus transmission in humans. Our previous findings reveal that viruses that are known to bind α2,6-SA in vitro have different transmission kinetics in vivo, suggesting that diverse SA interactions may occur during their life cycle. In this study, we examine the role of host SA on viral replication, shedding, and transmission in vivo. We highlight the critical role of SA presence during virus shedding, such that attachment to SA during virion egress is equally important as detachment from SA during virion release. These insights support the potential of broadly acting neuraminidases as therapeutic agents capable of restraining viral transmission in vivo. Our study unveils intricate virus-host interactions during shedding, highlighting the necessity to develop innovative strategies to effectively target transmission.


Assuntos
Vírus da Influenza A , Orthomyxoviridae , Humanos , Animais , Camundongos , Ácidos Siálicos/metabolismo , Traqueia , Neuraminidase/genética , Receptores Virais/metabolismo , Orthomyxoviridae/metabolismo
4.
Matrix Biol ; 126: 25-42, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38232913

RESUMO

The inter-alpha-trypsin inhibitor (IαI) complex is composed of the bikunin core protein with a single chondroitin sulfate (CS) attached and one or two heavy chains (HCs) covalently linked to the CS chain. The HCs from IαI can be transferred to hyaluronan (HA) through a TNFα-stimulated gene-6 (TSG-6) dependent process to form an HC•HA matrix. Previous studies reported increased IαI, HA, and HC•HA complexes in mouse bronchoalveolar lavage fluid (BALF) post-influenza infection. However, the expression and incorporation of HCs into the HA matrix of the lungs during the clinical course of influenza A virus (IAV) infection and the biological significance of the HC•HA matrix are poorly understood. The present study aimed to better understand the composition of HC•HA matrices in mice infected with IAV and how these matrices regulate the host pulmonary immune response. In IAV infected mice bikunin, HC1-3, TSG-6, and HAS1-3 all show increased gene expression at various times during a 12-day clinical course. The increased accumulation of IαI and HA was confirmed in the lungs of infected mice using immunohistochemistry and quantitative digital pathology. Western blots confirmed increases in the IαI components in BALF and lung tissue at 6 days post-infection (dpi). Interestingly, HCs and bikunin recovered from BALF and plasma from mice 6 dpi with IAV, displayed differences in the HC composition by Western blot analysis and differences in bikunin's CS chain sulfation patterns by mass spectrometry analysis. This strongly suggests that the IαI components were synthesized in the lungs rather than translocated from the vascular compartment. HA was significantly increased in BALF at 6 dpi, and the HA recovered in BALF and lung tissues were modified with HCs indicating the presence of an HC•HA matrix. In vitro experiments using polyinosinic-polycytidylic acid (poly(I:C)) treated mouse lung fibroblasts (MLF) showed that modification of HA with HCs increased cell-associated HA, and that this increase was due to the retention of HA in the MLF glycocalyx. In vitro studies of leukocyte adhesion showed differential binding of lymphoid (Hut78), monocyte (U937), and neutrophil (dHL60) cell lines to HA and HC•HA matrices. Hut78 cells adhered to immobilized HA in a size and concentration-dependent manner. In contrast, the binding of dHL60 and U937 cells depended on generating a HC•HA matrix by MLF. Our in vivo findings, using multiple bronchoalveolar lavages, correlated with our in vitro findings in that lymphoid cells bound more tightly to the HA-glycocalyx in the lungs of influenza-infected mice than neutrophils and mononuclear phagocytes (MNPs). The neutrophils and MNPs were associated with a HC•HA matrix and were more readily lavaged from the lungs. In conclusion, this work shows increased IαI and HA accumulation and the formation of a HC•HA matrix in mouse lungs post-IAV infection. The formation of HA and HC•HA matrices could potentially create specific microenvironments in the lungs for immune cell recruitment and activation during IAV infection.


Assuntos
alfa-Globulinas , Influenza Humana , Orthomyxoviridae , Camundongos , Animais , Humanos , Ácido Hialurônico/metabolismo , Sulfatos de Condroitina/metabolismo , Pulmão/metabolismo , Orthomyxoviridae/metabolismo , Imunidade Inata , Progressão da Doença
5.
Sci Rep ; 13(1): 22820, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38129678

RESUMO

Bunyaviruses constitute a large and diverse group of viruses encompassing many emerging pathogens, such as Rift Valley fever virus (family Phenuiviridae), with public and veterinary health relevance but with very limited medical countermeasures are available. For the development of antiviral strategies, the identification and validation of virus-specific targets would be of high value. The cap-snatching mechanism is an essential process in the life cycle of bunyaviruses to produce capped mRNAs, which are then recognized and translated into viral proteins by the host cell translation machinery. Cap-snatching involves cap-binding as well as endonuclease functions and both activities have been demonstrated to be druggable in related influenza viruses. Here, we explore the suitability of the phenuivirus cap-binding function as a target in medium- and high-throughput drug discovery approaches. We developed a range of in vitro assays aiming to detect the interaction between the cap-binding domain (CBD) and the analogue of its natural cap-ligand m7GTP. However, constricted by its shallow binding pocket and low affinity for m7GTP, we conclude that the CBD has limited small molecule targeting potential using classical in vitro drug discovery approaches.


Assuntos
Orthobunyavirus , Orthomyxoviridae , Vírus de RNA , Animais , Capuzes de RNA/metabolismo , Ensaios de Triagem em Larga Escala , RNA Mensageiro/metabolismo , Vírus de RNA/metabolismo , Orthomyxoviridae/metabolismo
6.
Vopr Virusol ; 68(6): 526-535, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38156568

RESUMO

INTRODUCTION: Polymerase proteins PB1 and PB2 determine the cold-adapted phenotype of the influenza virus A/Krasnodar/101/35/59 (H2N2), as was shown earlier. OBJECTIVE: The development of the reporter construct to determine the activity of viral polymerase at 33 and 37 °C using the minigenome method. MATERIALS AND METHODS: Co-transfection of Cos-1 cells with pHW2000 plasmids expressing viral polymerase proteins PB1, PB2, PA, NP (minigenome) and reporter construct. RESULTS: Based on segment 8, two reporter constructs were created that contain a direct or inverted NS1-GFP-NS2 sequence for the expression of NS2 and NS1 proteins translationally fused with green fluorescent protein (GFP), which allowed the evaluation the transcriptional and/or replicative activity of viral polymerase. CONCLUSION: Polymerase of virus A/Krasnodar/101/35/59 (H2N2) has higher replicative and transcriptional activity at 33 °C than at 37 °C. Its transcriptional activity is more temperature-dependent than its replicative activity. The replicative and transcriptional activity of polymerase A/Puerto Rico/8/34 virus (H1N1, Mount Sinai variant) have no significant differences and do not depend on temperature.


Assuntos
Influenzavirus A , Vírus da Influenza A Subtipo H1N1 , Orthomyxoviridae , Vírus da Influenza A Subtipo H1N1/genética , Orthomyxoviridae/genética , Orthomyxoviridae/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Temperatura , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo
7.
Int J Mol Sci ; 24(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37895062

RESUMO

Influenza virus is one of the main causes of respiratory infections worldwide. Despite the availability of seasonal vaccines and antivirals, influenza virus infections cause an important health and economic burden. Therefore, the need to identify alternative antiviral strategies persists. In this study, we identified non-steroidal estrogens as potent inhibitors of influenza virus due to their interaction with the hemagglutinin protein, preventing viral entry. This activity is maintained in vitro, ex vivo, and in vivo. Therefore, we found a new domain to target on the hemagglutinin and a class of compounds that could be further optimized for influenza treatment.


Assuntos
Estrogênios não Esteroides , Influenza Humana , Infecções por Orthomyxoviridae , Orthomyxoviridae , Humanos , Hemaglutininas , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/prevenção & controle , Orthomyxoviridae/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Antivirais/farmacologia
8.
J Phys Chem B ; 127(44): 9450-9460, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37877534

RESUMO

Membrane fusion is a fundamental process that is exploited by enveloped viruses to enter host cells. In the case of the influenza virus, fusion is facilitated by the trimeric viral hemagglutinin protein (HA). So far, major focus has been put on its N-terminal fusion peptides, which are directly responsible for fusion initiation. A growing body of evidence points also to a significant functional role of the HA C-terminal domain, which however remains incompletely understood. Our computational study aimed to elucidate the structural and functional interdependencies within the HA C-terminal region encompassing the transmembrane domain (TMD) and the cytoplasmic tail (CT). In particular, we were interested in the conformational shift of the TMD in response to varying cholesterol concentration in the viral membrane and in its modulation by the presence of CT. Using free-energy calculations based on atomistic molecular dynamics simulations, we characterized transitions between straight and tilted metastable TMD configurations under varying conditions. We found that the presence of CT is essential for achieving a stable, highly tilted TMD configuration. As we demonstrate, such a configuration of HA membrane anchor likely supports the tilting motion of its ectodomain, which needs to be executed during membrane fusion. This finding highlights the functional role of, so far, the relatively overlooked CT region.


Assuntos
Hemaglutininas , Orthomyxoviridae , Orthomyxoviridae/metabolismo , Hemaglutininas Virais , Domínios Proteicos , Fusão de Membrana , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química
9.
Proc Natl Acad Sci U S A ; 120(44): e2314905120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37871218

RESUMO

Antibody responses against highly conserved epitopes on the stalk domain of influenza virus hemagglutinin (HA) confer broad protection; however, such responses are limited. To effectively induce stalk-specific immunity against conserved HA epitopes, sequential immunization strategies have been developed based on chimeric HA (cHA) constructs featuring different head domains but the same stalk regions. Immunogenicity studies in small animal models, as well as in humans, revealed that cHA immunogens elicit stalk-specific IgG responses with broad specificity against heterologous influenza virus strains. However, the mechanisms by which these antibodies confer in vivo protection and the contribution of their Fc effector function remain unclear. To characterize the role of Fc-FcγR (Fcγ receptor) interactions to the in vivo protective activity of IgG antibodies elicited in participants in a phase I trial of a cHA vaccine candidate, we performed passive transfer studies of vaccine-elicited IgG antibodies in mice humanized for all classes of FcγRs, as well as in mice deficient for FcγRs. IgG antibodies elicited upon cHA vaccination completely protected FcγR humanized mice against lethal influenza virus challenge, while no protection was evident in FcγR-deficient mice, suggesting a major role for FcγR pathways in the protective function of vaccine-elicited IgG antibodies. These findings have important implications for influenza vaccine development, guiding the design of vaccination approaches with the capacity to elicit IgG responses with optimal Fc effector function.


Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Orthomyxoviridae , Humanos , Animais , Camundongos , Hemaglutininas , Receptores de IgG/genética , Receptores de IgG/metabolismo , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Orthomyxoviridae/metabolismo , Influenza Humana/prevenção & controle , Vacinação , Imunoglobulina G , Epitopos
10.
Immun Inflamm Dis ; 11(9): e997, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37773712

RESUMO

BACKGROUND: Influenza virus (IV) is a leading cause of respiratory tract infections, eliciting responses from key innate immune cells such as Macrophages (MQs), Neutrophils, and Dendritic Cells (DCs). These cells employ diverse mechanisms to combat IV, with Inflammasomes playing a pivotal role in viral infection control. Cellular death mechanisms, including Pyroptosis, Apoptosis, and Necroptosis (collectively called PANoptosis), significantly contribute to the innate immune response. METHODS: In this updated review, we delve into the intricate relationship between PANoptosis and Inflammasomes within innate immune cells (MQs, Neutrophils, and DCs) during IV infections. We explore the strategies employed by IV to evade these immune defenses and the consequences of unchecked PANoptosis and inflammasome activation, including the potential development of severe complications such as cytokine storms and tissue damage. RESULTS: Our analysis underscores the interplay between PANoptosis and Inflammasomes as a critical aspect of the innate immune response against IV. We provide insights into IV's various mechanisms to subvert these immune pathways and highlight the importance of understanding these interactions to develop effective antiviral medications. CONCLUSION: A comprehensive understanding of the dynamic interactions between PANoptosis, Inflammasomes, and IV is essential for advancing our knowledge of innate immune responses to viral infections. This knowledge will be invaluable in developing targeted antiviral therapies to combat IV and mitigate potential complications, including cytokine storms and tissue damage.


Assuntos
Infecções por Orthomyxoviridae , Orthomyxoviridae , Humanos , Inflamassomos/metabolismo , Síndrome da Liberação de Citocina , Imunidade Inata , Orthomyxoviridae/metabolismo , Antivirais
11.
N Biotechnol ; 77: 100-110, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37586547

RESUMO

Applications of influenza A viruses (IAV) for virotherapy and biotechnology have accelerated substantially with the development of reverse genetic technology and advances in the understanding of packaging signals. While the use of a replication-competent IAV is particularly promising, owing to its efficient transmission to organ depths with high infectivity, there is also a risk that its multiplication cannot be controlled in a cell-type-specific manner, causing an infectious disease. Therefore, here a simple and effective replication-competent IAV-based cell-targeting system has been developed. It was demonstrated that the activity of the ribonucleoprotein complex (RNP) of IAV could be regulated by the interaction between the endogenous protein and a nanobody fused to the subunit of RNA-dependent RNA polymerase (RdRp). To validate the feasibility of the method, it was demonstrated that RNP containing RdRp fused with Nb139, a nanobody against p53, is inactive in HEK293T cells expressing endogenous p53, but active in p53-defective Saos-2 cells. Finally, a replication-competent IAV was successfully generated that multiplies only in p53-defective tumor cells and an IAV vector was developed that can deliver a foreign gene in cell type-specific manner. The method is flexible because the nanobody can be easily altered to target a different cell type, offering a valuable platform for virotherapy and biotechnology.


Assuntos
Influenza Humana , Orthomyxoviridae , Humanos , Proteína Supressora de Tumor p53 , Células HEK293 , Influenza Humana/genética , Influenza Humana/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Orthomyxoviridae/metabolismo
12.
J Virol ; 97(5): e0033723, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37166301

RESUMO

In the influenza virus life cycle, viral RNA (vRNA) transcription (vRNA→mRNA) and replication (vRNA→cRNA→vRNA), catalyzed by the viral RNA-dependent RNA polymerase in the host cell nucleus, are delicately controlled, and the levels of the three viral RNA species display very distinct synthesis dynamics. However, the underlying mechanisms remain elusive. Here, we demonstrate that in the context of virus infection with cycloheximide treatment, the expression of viral nonstructural protein 1 (NS1) can stimulate primary transcription, while the expression of viral NS2 inhibits primary transcription. It is known that the NS1 and NS2 proteins are expressed with different timings from unspliced and spliced mRNAs of the viral NS segment. We then simulated the synthesis dynamics of NS1 and NS2 proteins during infection by dose-dependent transfection experiments in ribonucleoprotein (RNP) reconstitution systems. We found that the early-expressed NS1 protein can stimulate viral mRNA synthesis, while the late-expressed NS2 protein can inhibit mRNA synthesis but can promote vRNA synthesis in a manner highly consistent with the dynamic changes in mRNA/vRNA in the virus life cycle. Furthermore, we observed that the coexistence of sufficient NS1 and NS2, close to the status of the NS1 and NS2 levels in the late stage of infection, could boost vRNA synthesis to the highest efficiency. We also identified key functional amino acids of NS1 and NS2 involved in these regulations. Together, we propose that the stoichiometric changes in the viral NS1 and NS2 proteins during infection are responsible for the fine regulation of viral RNA transcription and replication. IMPORTANCE In order to ensure efficient multiplication, influenza virus transcribes and replicates its segmented, negative-sense viral RNA genome in highly ordered dynamics across the virus life cycle. How the virus achieves such regulation remains poorly understood. Here, we demonstrate that the stoichiometric changes in the viral NS1 and NS2 proteins during infection could be responsible for the fine regulation of the distinct dynamics of viral RNA transcription and replication. We thus propose a fundamental mechanism exploited by influenza virus to dynamically regulate the synthesis of its viral RNA through the delicate control of viral NS1 and NS2 protein expression.


Assuntos
Vírus da Influenza A , Orthomyxoviridae , Proteínas não Estruturais Virais , Vírus da Influenza A/metabolismo , Orthomyxoviridae/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética
13.
Ecotoxicol Environ Saf ; 259: 115069, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37244199

RESUMO

Exposure to particulate matter (PM) has been associated with increased hospital admissions for influenza. Airway epithelial cells are a primary target for inhaled environmental insults including fine PM (PM2.5) and influenza viruses. The potentiation of PM2.5 exposure on the effects of influenza virus on airway epithelial cells has not been adequately elucidated. In this study, the effects of PM2.5 exposure on influenza virus (H3N2) infection and downstream modulation of inflammation and antiviral immune response were investigated using a human bronchial epithelial cell line, BEAS-2B. The results showed that PM2.5 exposure alone increased the production of pro-inflammatory cytokines including interleukin-6 (IL-6) and IL-8 but decreased the production of the antiviral cytokine interferon-ß (IFN-ß) in BEAS-2B cells while H3N2 exposure alone increased the production of IL-6, IL-8, and IFN-ß. Importantly, prior exposure to PM2.5 enhanced subsequent H3N2 infectivity, expression of viral hemagglutinin protein, as well as upregulation of IL-6 and IL-8, but reduced H3N2-induced IFN-ß production. Pre-treatment with a pharmacological inhibitor of nuclear factor-κB (NF-κB) suppressed pro-inflammatory cytokine production induced by PM2.5, H3N2, as well as PM2.5-primed H3N2 infection. Moreover, antibody-mediated neutralization of Toll-like receptor 4 (TLR4) blocked cytokine production triggered by PM2.5 or PM2.5-primed H3N2 infection, but not H3N2 alone. Taken together, exposure to PM2.5 alters H3N2-induced cytokine production and markers of replication in BEAS-2B cells, which in turn are regulated by NF-κB and TLR4.


Assuntos
Influenza Humana , Orthomyxoviridae , Humanos , Material Particulado/metabolismo , Receptor 4 Toll-Like/metabolismo , Interleucina-6/metabolismo , NF-kappa B/metabolismo , Interleucina-8/metabolismo , Células Epiteliais , Citocinas/metabolismo , Orthomyxoviridae/metabolismo , Antivirais/metabolismo , Antivirais/farmacologia
14.
Biophys Chem ; 299: 107028, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37247572

RESUMO

The glycoprotein spikes of membrane-enveloped viruses include a subunit that catalyzes fusion (joining) of the viral and target cell membranes. For influenza virus, this is subunit 2 of hemagglutinin which has a âˆ¼ 20-residue N-terminal fusion peptide (Fp) region that binds target membrane. An outstanding question is whether there are associated membrane changes important for fusion. Several computational studies have found increased "protrusion" of lipid acyl chains near Fp, i.e. one or more chain carbons are closer to the aqueous region than the headgroup phosphorus. Protrusion may accelerate initial joining of outer leaflets of the two membranes into a stalk intermediate. In this study, higher protrusion probability in membrane with vs. without Fp is convincingly detected by larger Mn2+-associated increases in chain 13C NMR transverse relaxation rates (Γ2's). Data analysis provides a ratio Γ2,neighbor/Γ2,distant for lipids neighboring vs. more distant from the Fp. The calculated ratio depends on the number of Fp-neighboring lipids and the experimentally-derived range of 4 to 24 matches the range of increased protrusion probabilities from different simulations. For samples either with or without Fp, the Γ2 values are well-fitted by an exponential decay as the 13C site moves closer to the chain terminus. The decays correlate with free-energy of protrusion proportional to the number of protruded -CH2 groups, with free energy per -CH2 of ∼0.25 kBT. The NMR data support one major fusion role of the Fp to be much greater protrusion of lipid chains, with highest protrusion probability for chain regions closest to the headgroups.


Assuntos
Hemaglutininas , Orthomyxoviridae , Hemaglutininas/análise , Hemaglutininas/metabolismo , Membrana Celular/química , Peptídeos/química , Orthomyxoviridae/metabolismo , Lipídeos/química , Fusão de Membrana
15.
J Biol Chem ; 299(6): 104765, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37121546

RESUMO

Influenza hemagglutinin (HA) is a prototypical class 1 viral entry glycoprotein, responsible for mediating receptor binding and membrane fusion. Structures of its prefusion and postfusion forms, embodying the beginning and endpoints of the fusion pathway, have been extensively characterized. Studies probing HA dynamics during fusion have begun to identify intermediate states along the pathway, enhancing our understanding of how HA becomes activated and traverses its conformational pathway to complete fusion. HA is also the most variable, rapidly evolving part of influenza virus, and it is not known whether mechanisms of its activation and fusion are conserved across divergent viral subtypes. Here, we apply hydrogen-deuterium exchange mass spectrometry to compare fusion activation in two subtypes of HA, H1 and H3. Our data reveal subtype-specific behavior in the regions of HA that undergo structural rearrangement during fusion, including the fusion peptide and HA1/HA2 interface. In the presence of an antibody that inhibits the conformational change (FI6v3), we observe that acid-induced dynamic changes near the epitope are dampened, but the degree of protection at the fusion peptide is different for the two subtypes investigated. These results thus provide new insights into variation in the mechanisms of influenza HA's dynamic activation and its inhibition.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza , Orthomyxoviridae , Humanos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Hemaglutininas , Concentração de Íons de Hidrogênio , Influenza Humana , Orthomyxoviridae/metabolismo , Peptídeos
16.
J Ethnopharmacol ; 313: 116481, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37072090

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The combined prescription of two classical decoctions (Ma-Xing-Shi-Gan decoction with Xiao-Chai-Hu decoction), named as San-Yang-He-Zhi (SYHZ) decoction, has been widely used for the treatment of influenza virus (IFV) infections for decades. AIM OF THE STUDY: This study aimed to evaluate the anti-influenza effect of SYHZ decoction and explore the underlying mechanism. MATERIALS AND METHODS: The ingredients of SYHZ decoction were analyzed by mass spectrometry. An animal model of IFV infection was established by challenging C57BL/6J mice with PR8 virus. Three groups of mice were infected with lethal or non-lethal doses of IFV, then followed by oral administration of phosphate-buffered saline (PBS), or SYHZ, or oseltamir; blank control mice (without IFV infection) were treated with PBS. Survival rate, Lung index, colon length, body weight loss and IFV viral load were measured 7 days post infection; histology and electron-microscopy examinations of lung tissue were performed; cytokine and chemokine levels in lung and serum were measured; and the intestinal metagenome, the cecum metabolome, and the lung transcriptome were analyzed. RESULTS: SYHZ treatment significantly improved survival rate compared with PBS (40% vs 0%); improved lung index, colon length, and body weight loss; and alleviated lung histological damage and viral load. SYHZ-treated mice had significantly lower levels of IL-1ß, TNF-α, IL-6, CCL2, CXCL10 in lung and serum, and increased levels of multiple bioactive components in cecum. Pro-inflammatory cytokines, Toll- and NOD-like receptors, pro-apoptosis molecules, and lung-injury-related proteins were downregulated in SYHZ mice, whereas surfactant protein and mucin were upregulated. The NOD-like receptor pathway, Toll-like receptor pathway, and NF-κB pathway were downregulated by SYHZ treatment. CONCLUSIONS: SYHZ decoction alleviated IFV infection in a mouse model. Multiple bioactive ingredients of SYHZ may inhibit replication of IFV and suppress excessive immune response.


Assuntos
Medicamentos de Ervas Chinesas , Infecções por Orthomyxoviridae , Orthomyxoviridae , Camundongos , Animais , Camundongos Endogâmicos C57BL , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Pulmão , Citocinas/metabolismo , Orthomyxoviridae/metabolismo , Replicação Viral , Redução de Peso
17.
Viruses ; 15(4)2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37112882

RESUMO

The fusion of viral and cell membranes is one of the basic processes in the life cycles of viruses. A number of enveloped viruses confer fusion of the viral envelope and the cell membrane using surface viral fusion proteins. Their conformational rearrangements lead to the unification of lipid bilayers of cell membranes and viral envelopes and the formation of fusion pores through which the viral genome enters the cytoplasm of the cell. A deep understanding of all the stages of conformational transitions preceding the fusion of viral and cell membranes is necessary for the development of specific inhibitors of viral reproduction. This review systematizes knowledge about the results of molecular modeling aimed at finding and explaining the mechanisms of antiviral activity of entry inhibitors. The first section of this review describes types of viral fusion proteins and is followed by a comparison of the structural features of class I fusion proteins, namely influenza virus hemagglutinin and the S-protein of the human coronavirus.


Assuntos
Infecções por Coronavirus , Coronavirus , Orthomyxoviridae , Humanos , Proteínas Virais de Fusão/metabolismo , Coronavirus/metabolismo , Hemaglutininas/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Fusão de Membrana , Orthomyxoviridae/metabolismo , Internalização do Vírus
18.
J Virol ; 97(3): e0174322, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36877044

RESUMO

Type III interferons (IFNLs) have critical roles in the host's innate immune system, also serving as the first line against pathogenic infections of mucosal surfaces. In mammals, several IFNLs have been reported; however, only limited data on the repertoire of IFNLs in avian species is available. Previous studies showed only one member in chicken (chIFNL3). Herein, we identified a novel chicken IFNL for the first time, termed chIFNL3a, which contains 354 bp, and encodes 118 amino acids. The predicted protein is 57.1% amino acid identity with chIFNL. Genetic, evolutionary, and sequence analyses indicated that the new open reading frame (ORF) groups with type III chicken IFNs represent a novel splice variant. Compared to IFNs from different species, the new ORF is clustered within the type III IFNs group. Further study showed that chIFNL3a could activate a panel of IFN-regulated genes and function mediated by the IFNL receptor, and chIFNL3a markedly inhibited the replication of Newcastle disease virus (NDV) and influenza virus in vitro. These data collectively shed light on the repertoire of IFNs in avian species and provide useful information that further elucidate the interaction of the chIFNLs and viral infection of poultry. IMPORTANCE Interferons (IFNs) are critical soluble factors in the immune system, and are composed of 3 types (I, II, and III) that utilize different receptor complexes (IFN-αR1/IFN-αR2, IFN-γR1/IFN-γR2, and IFN-λR1/IL-10R2, respectively). Herein, we identified IFNL from the genomic sequences of chicken and termed it chIFNL3a, located on chromosome 7 of chicken. Phylogenetically clustered with all known types of chicken IFNs, the finding of this IFN is considered a type III IFN. To further evaluate the biological properties of chIFNL3a, the target protein was prepared by the baculovirus expression system (BES), which could markedly inhibit the replication of NDV and influenza viruses. In this study, we uncovered a new interferon lambda splice variant of chicken, termed chIFNL3a, which could inhibit viral replication in cells. Importantly, these novel findings may extend to other viruses, offering a new direction for therapeutic interventions.


Assuntos
Galinhas , Orthomyxoviridae , Animais , Interferon lambda , Antivirais/farmacologia , Interferons/metabolismo , Orthomyxoviridae/metabolismo , Vírus da Doença de Newcastle/metabolismo , Mamíferos
19.
Int J Mol Sci ; 24(4)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36835528

RESUMO

The Bile Acid Binding Site (BABS) of cytochrome oxidase (CcO) binds numerous amphipathic ligands. To determine which of the BABS-lining residues are critical for interaction, we used the peptide P4 and its derivatives A1-A4. P4 is composed of two flexibly bound modified α-helices from the M1 protein of the influenza virus, each containing a cholesterol-recognizing CRAC motif. The effect of the peptides on the activity of CcO was studied in solution and in membranes. The secondary structure of the peptides was examined by molecular dynamics, circular dichroism spectroscopy, and testing the ability to form membrane pores. P4 was found to suppress the oxidase but not the peroxidase activity of solubilized CcO. The Ki(app) is linearly dependent on the dodecyl-maltoside (DM) concentration, indicating that DM and P4 compete in a 1:1 ratio. The true Ki is 3 µM. The deoxycholate-induced increase in Ki(app) points to a competition between P4 and deoxycholate. A1 and A4 inhibit solubilized CcO with Ki(app)~20 µM at 1 mM DM. A2 and A3 hardly inhibit CcO either in solution or in membranes. The mitochondrial membrane-bound CcO retains sensitivity to P4 and A4 but acquires resistance to A1. We associate the inhibitory effect of P4 with its binding to BABS and dysfunction of the proton channel K. Trp residue is critical for inhibition. The resistance of the membrane-bound enzyme to inhibition may be due to the disordered secondary structure of the inhibitory peptide.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Orthomyxoviridae , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Peptídeos/metabolismo , Estrutura Secundária de Proteína , Ácido Desoxicólico , Orthomyxoviridae/metabolismo
20.
ACS Sens ; 8(2): 829-838, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36689687

RESUMO

Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is an important cofactor in the progress of antioxidant synthesis and biosynthesis, and an abnormal NADPH level has been observed in many viral infection processes. However, efficient tools to monitor NADPH in living cells after viral infection have not been reported. In this work, we present a fluorescent probe, NAFP4, that could detect NADPH ex vivo with a low detection limit of 3.66 nM and image mitochondrial NADPH level changes in living cells. The probe exhibits excellent cell permeability, rapid reactivity, and high selectivity with minimal cytotoxicity. Using NAFP4, we reveal that the NADPH is overproduced in the host cells infected by influenza virus, which was caused by an elevated level of G6PDH during the virus infection. Moreover, there was positive association between the G6PDH level and virus replication. With the proposed probe NAFP4, our study highlights that the virus infection would influence the host metabolism in NADPH production and also suggests that G6PDH is expected to be a promising target for antiviral therapy.


Assuntos
Influenza Humana , Orthomyxoviridae , Humanos , NADP/metabolismo , Corantes Fluorescentes , Mitocôndrias/metabolismo , Orthomyxoviridae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...